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Abstract

We propose a methodology that is generalizable to a broad class of repeated games in order

to facilitate operability of belief learning models with repeated-game strategies. The methodology

consists of (1) a generalized repeated-game strategy space, (2) a mapping between histories and

repeated-game beliefs, and (3) asynchronous updating of repeated-game strategies. We implement

the proposed methodology by building on three proven action learning models. Their predictions

with repeated-game strategies are then validated with data from experiments with human subjects in

four, symmetric 2× 2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. The

models with repeated-game strategies approximate subjects’ behavior substantially better than their

respective models with action learning. Additionally, inferred rules of behavior in the experimental

data overlap with the rules of behavior predicted.
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tonella Ianni, Leonidas Spiliopoulos, Miltos Makris, Spyros Galanis, Thomas Gall, Syngjoo Choi, Jian Tong, Chong Juin-Kuan, Laurent
Mathevet, Tim Cason, Jasmina Arifovic, David Gill and Guillaume Fréchette. We would also like to thank the seminar participants
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1 Introduction

The limitations of adaptive models with actions have been well recognized in the literature. For

instance, Erev and Roth (1998) note that it will not generally be the case that learning behavior

can be analyzed in terms of actions alone (p. 872). Along similar lines, Camerer and Ho (1999)

point out that actions “are not always the most natural candidates for the strategies that players

learn about” (p. 871). Yet developing models with repeated-game strategies has been inhibited by

several obstacles. First, the set of possible strategies in repeated games is infinite (uncountable).

Expecting a player to fully explore such an infinite set is therefore unrealistic and impractical.

Second, as McKelvey and Palfrey (2001) note, “players face an inference problem going from

histories to beliefs about opponents’ strategies” in repeated games (p. 25). A player’s beliefs

about the repeated-game strategy of the opponent become more complex because several different

strategies can lead to the same history. Consequently, even though the history of play is publicly

observed, a player may not know the precise strategy of the opponent. Third, repeated-game

strategies need several periods to be evaluated. Traditionally, action learning models required

that the updating of each player’s action set occurs synchronously at the end of each period. This

is sensible if a player uses actions, but if a player uses repeated-game strategies, then the player

ought to play the stage game a number of times before assessing the payoff consequences of the

repeated-game strategy chosen.

In this study, we propose a methodology that is generalizable to a broad class of repeated games

in order to facilitate operability of belief learning models with repeated-game strategies. The

methodology consists of (1) a generalized repeated-game strategy space, (2) a mapping between

histories and repeated-game beliefs, and (3) asynchronous updating of repeated-game strategies.

The first step in operationalizing the proposed framework is to use generalizable rules, which re-

quire a relatively small repeated-game strategy set, but may implicitly encompass a much larger

space (see for instance, Stahl’s rule learning in Stahl (1999) and Stahl and Haruvy (2012)). A

large number of repeated-game strategies is impractical for updating under most existing learning

models because the probability of observing any particular strategy in the space is near zero. We

propose instead a generalized repeated-game strategy space where players’ strategies are imple-

mented by a type of finite automaton, called a Moore machine (Moore (1956)); thus, the strategy

space only includes a subset of the theoretically large set of possible strategies in repeated games.

The second step establishes a mapping between histories and repeated-game beliefs. In particu-

lar, a fitness function is proposed, which counts the number of consecutive fits of each candidate

strategy of the opponent with the observed action profile sequence, starting from the most re-

cent action profile and going backwards. Beliefs for each candidate strategy of the opponent are

derived by normalizing each strategy’s respective fitness by the total fitness of all candidate strate-

gies of the opponent. This novel approach solves the inference problem of going from histories to
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beliefs about opponents’ strategies in a manner consistent with belief learning.1 The third step

accommodates asynchronous updating of repeated-game strategies. For one, a player’s strategy

set is updated with the completion of a block of periods, and not, necessarily, at the end of each

period as traditional action learning models require. Furthermore, the probability of updating

the strategy set is endogenous and based on the “surprise-triggers-change” regularity identified

by Erev and Haruvy (2013).2 Surprise is defined as the difference between actual and expected

(anticipated) payoff. Thus, if a player receives a payoff similar to what is expected, then surprise is

low hence the probability of updating the strategy set increases by a relatively small amount. On

the other hand, if a player receives a payoff that is drastically different from the one anticipated,

then surprise is high hence the probability of updating the strategy set increases by a relative

large amount. Henceforth, for brevity, we refer to learning of repeated-game strategies as strategy

learning. The proposed methodology for strategy learning is indicated in Table 1.

Generalized Repeated-Game Strategy Space
We propose a generalized repeated-game strategy space where players strategies are imple-
mented by a type of finite automaton, called a Moore machine (Moore (1956)).

Mapping Between Histories and Repeated-Game Beliefs
We propose a fitness function, which counts the number of consecutive fits of each candidate
strategy of the opponent with the observed action profile sequence, starting from the most
recent action profile and going backwards. Beliefs for each candidate strategy of the opponent
are derived by normalizing each strategy’s respective fitness by the total number of fitness
of all candidate strategies of the opponent.

Asynchronous Updating of Repeated-Game Strategies
We propose that the updating of repeated-game strategies is endogenous and based on the
“surprise-triggers-change” regularity identified by Erev and Haruvy (2013). Thus, a player’s
strategy set is updated asynchronously with the completion of a block of periods, and not,
necessarily, at the end of each period.

Table 1: Proposed Methodology For Strategy Learning

1Alternatively, Hanaki, Sethi, Erev, and Peterhansl (2005) develop a model of learning of repeated-game strate-
gies with standard reinforcement. Reinforcement learning responds only to payoffs obtained by strategies chosen
by the player, hence evades the inference problem highlighted above. Yet reinforcement models are most sensible
when players do not know the foregone payoffs of unchosen strategies. Several studies show that providing fore-
gone payoff information affects learning, which suggests that players do not simply reinforce chosen strategies (see
Mookherjee and Sopher (1994), Rapoport and Erev (1998), Camerer and Ho (1999), Costa-Gomes, Crawford, and
Broseta (2001), Nyarko and Schotter (2002) and Van Huyck, Battalio, and Rankin (2007)).

2Erev and Haruvy (2013) observed that subjects exhibit a positive relationship (inertia) between recent and
current action choices (see also Cooper and Kagel (2003) and Erev and Haruvy (2005)). Yet the probability of
terminating the inertia mode increases with surprise; that is, surprise triggers change.
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We assess the impact of the proposed methodology by building on three leading action learning

models: a self-tuning Experience Weighted Attraction model (Ho, Camerer, and Chong (2007)), a

γ-Weighted Beliefs model (Cheung and Friedman (1997)), and an Inertia, Sampling and Weighting

model (Erev, Ert, and Roth (2010)). The predictions of the three models with strategy learning

are validated with data from the experiments with human subjects of Mathevet and Romero

(2012) in four, symmetric 2× 2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and

Chicken. We use the experimental dataset to also validate the predictions of their respective

models with action learning, which enables us to determine the improvement in fit in moving

from action learning models to strategy learning ones. Finally, we infer rules of behavior in the

experimental dataset and compare them to those predicted by the strategy learning models.

We find that the strategy learning models approximate subjects’ behavior substantially better

than their respective models with action learning. Furthermore, inferred rules of behavior in

the experimental data overlap with the rules of behavior predicted. More specifically, the most

prevalent rules of behavior in the experimental dataset in the Prisoner’s Dilemma, Stag-Hunt, and

Chicken are cooperative rules of behavior “Grim-Trigger” and “Tit-For-Tat.” The same two rules

emerge as the most prevalent in the simulations. Likewise, in the Battle of the Sexes, the same

cooperative rules of behavior implementing alternations that prevail in the experimental dataset,

also prevail in the simulations.

The layout of this paper adheres to the following plan. In Section 2, we discuss the games

and review the related experimental literature. In Section 3, we provide details on the simulations

and the goodness-of-fit measure used to compare quantitatively the predictions of the models with

laboratory experimental data. In Section 4, we provide the action learning models deployed to

implement the proposed methodology. Our methodology is presented in Section 5. In Section 6, we

display the results of the computational simulations. Additionally, we infer rules of behavior in the

experimental data and compare them to the rules of behavior predicted by the strategy learning

models. Finally, in Section 7, we offer concluding remarks and direction for future research.

2 The Games

Our choice of games is not coincidental. We targeted four, symmetric 2× 2 games that are simple

albeit capture important aspects of everyday experiences, such as cooperation, coordination and

reciprocity. In particular, we chose the Prisoner’s Dilemma game, the Battle of the Sexes game,

the Stag-Hunt game, and the Chicken game. The payoff matrices of the games are illustrated in

Figure 1. The payoff matrix of the Prisoner’s Dilemma game is indicated in Figure 1(a), where

the cooperative action is denoted with the letter “A” and the action of defection is denoted with
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Figure 1: Payoff Matrices

the letter “B.” Each player’s dominant strategy is to play B. The payoff matrix of the Battle

of the Sexes game is indicated in Figure 1(b). In this game, there are two pure-strategy Nash

equilibria: (A,B) and (B,A) . Each player receives a higher payoff in the equilibrium in which

he plays B. Alternating between the two pure-strategy Nash equilibria leads to the only Pareto

optimal outcome where the two players receive equal payoffs. The payoff matrix of the Stag-Hunt

game is indicated in Figure 1(c). In this game, there are two pure-strategy Nash equilibria: (A,A)

and (B,B). However, outcome (A,A) is the payoff-dominant Nash equilibrium. The payoff matrix

of the Chicken game is indicated in Figure 1(d). In this game, there is a mixed symmetric Nash

equilibrium and two pure-strategy Nash equilibria: (A,B) and (B,A). Furthermore, the mutual

conciliation outcome of (A,A) yields higher payoffs than the average payoffs of each player when

alternating between the pure-strategy Nash equilibria.

Recently, Mathevet and Romero (2012) conducted laboratory experiments using the payoff

matrices displayed in Figure 1. The experimental sessions were run at the Vernon Smith Exper-

imental Economics Laboratory at Purdue University. Pairs were matched in a fixed matching

protocol. The continuation probability for an additional period was 0.99 and was common knowl-

edge in all experimental sessions. The authors find remarkable regularity in the data. In the
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Prisoner’s Dilemma game, pairs predominantly end up at the mutual cooperation outcome. How-

ever, there is also a large number of pairs that end up at the mutual defection outcome. In the

Battle of the Sexes, most pairs alternate between the two pure-strategy Nash equilibria. The latter

outcome promotes efficiency and fainess. In the Stag-Hunt game, pairs predominantly end up at

the payoff-dominant Nash equilibrium, whereas in the Chicken game, most pairs coordinate on

the mutual conciliation outcome. The experimental data is included in Appendix A. (The relative

frequency of each payoff combination over the last 10 periods of game-play in the experiments of

Mathevet and Romero (2012) is displayed in Figure 2.)

The findings in Mathevet and Romero (2012) confirm the trends detected by a vast number

of much earlier studies (e.g. Rapoport and Chammah (1965) and Rapoport, Guyer, and Gordon

(1976)). Yet standard learning algorithms have limited success in capturing the degree of coop-

eration in the Prisoner’s Dilemma game and the alternation between the two pure-strategy Nash

equilibria in the Battle of the Sexes game (Arifovic, McKelvey, and Pevnitskaya (2006)). Along

similar lines, Erev and Haruvy (2013) point out that “human agents exhibit higher social intelli-

gence and/or sensitivity than assumed by the basic learning models” (p. 61). Hanaki, Sethi, Erev,

and Peterhansl (2005) partially resolve the problem by demonstrating that applying a restricted

set of repeated-game strategies to a simple reinforcement model of learning can account for some

of the trends observed in the experiments. However, several studies show that providing foregone

payoff information affects learning, which suggests that players do not simply reinforce chosen

strategies. In fact, in certain settings players are more sensitive to foregone than to obtained

payoffs (see Grosskopf, Erev, and Yechiam (2006)). An alternative approach could be to assume a

mixture of adaptive and sophisticated players. An adaptive player responds to either the payoffs

earned or the history of play, but does not anticipate how others are learning. On the other hand, a

sophisticated player rationally best responds to his forecasts of all other behaviors.3 Furthermore,

a sophisticated player is either myopic or farsighted. A farsighted player develops multiple-period

rather than single-period forecasts of others’ behaviors and chooses to “teach” the other players

by selecting a strategy scenario that gives him the highest discounted net present value.4 Yet such

teaching models’ inability to both execute and anticipate sophisticated behaviors, impedes the

delivery of cooperation and conciliation in the Prisoner’s Dilemma game and the Chicken game,

respectively. Take for instance, learning in the Prisoner’s Dilemma game. Assume that there

exists a population of agents, which consists of sophisticated players and adaptive players á la

3The theoretical literature on sophisticated decision makers demonstrates that their presence may lead to
Stackelberg payoffs for the sophisticated player (Fudenberg and Levine (1989)), may lead to the risk-dominant
equilibrium as long as the sophisticated player is sufficiently patient (Ellison (1997)), or may force cooperation if
the sophisticated player has limited foresight (Jéhiel (2001)).

4In the generalized model of Camerer, Ho, and Chong (2002) cooperation emerges in p-beauty contests and
repeated Trust games when sophisticated players are able to teach their opponents that cooperation is beneficial
(see also Chong, Camerer, and Ho (2006) and Hyndman, Ozbay, Schotter, and Ehrblatt (2012)).
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Camerer, Ho, and Chong (2002). An adaptive player always chooses to defect, regardless of his

belief about the opponent’s action, because defection is a strictly dominant action.5 On the other

hand, a sophisticated player is able to anticipate the effect of his own behavior on the actions of his

opponent. However, this is not sufficient to drive a sophisticated player paired with an adaptive

player to cooperative behavior, because the adaptive player will choose to defect, as defection is

always his best response. Consequently, the sophisticated player will also respond with defection

thus, the pair will lock themselves into an endless string of defections. Analogous arguments hold

for the Chicken game; that is, a teaching model with sophisticated and adaptive players would

predict the Nash equilibrium − not, the mutual conciliation outcome.

In this study, we seek to capture the effect of experience on cooperation and coordination

by facilitating learning among a subset of repeated-game strategies. In particular, players are

assumed to consider strategies that can be represented by finite automata having no more than

two states. Such specification of the strategy set improves predictions in two distinct ways. First,

it allows for convergence to non-trivial sequences, such as alternations in the Battle of the Sexes

game. Second, the richer set of strategies allows sophisticated strategic behavior, which not only

incorporates punishments and triggers, but also anticipation of punishments and triggers. As

a result, the threat of punishment will drive a selfish player to conform to cooperation in the

Prisoner’s Dilemma game and to conciliation in the Chicken game.

3 Simulations and Goodness of Fit

According to the thought experiment, players play an infinitely-repeated game with perfect moni-

toring and complete information. Similar to the framework of Hanaki, Sethi, Erev, and Peterhansl

(2005), we allow for two phases of learning. In the pre-experimental phase, pairs of players engage

in a lengthy process of learning in a fixed matching protocol. Each simulation is broken up into

epochs of 100 periods. The simulation runs until the average epoch payoff of the pair has not

changed by more than 0.01 from the previous epoch (in terms of Euclidean distance) in 20 consec-

utive epochs. Convergence of the average payoff of a pair marks the end of the pre-experimental

phase (details on convergence are included in Appendix B).6 The pre-experimental phase is used

to develop the initial attractions that will be used in the experimental phase. In the first period of

the experimental phase, players are randomly rematched. Afterwards, pairs stay matched for 100

5Cooperation in the Prisoner’s Dilemma cannot be taught, even if the adaptive player is using a pure rein-
forcement learning model. For example, a reinforcement learner matched against a “Tit-For-Tat” strategist will,
eventually, have attractions that favor defection.

6The maximum number of periods for the pre-experimental stage was set at 50,000.
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periods.7 The application of two phases serves as a partition between the knowledge subjects bring

to the experimental laboratory (knowledge accrued from subjects’ different experiences, maybe,

due to learning transferred from different games or due to introspection) and the actual game-play

within the laboratory.

We consider a simple goodness-of-fit measure to determine how far the predictions of a given

model are from the experimental data. In particular, we compare the average payoffs over the

last 10 periods of the experimental phase to the average payoffs over the last 10 periods of the

experimental data. To calculate the measure, we first discretize the set of possible payoffs by using

the following transformation:

D (π) = ε
⌊π
ε

⌉
,

where π is the payoff, ε is the accuracy of the discretization and D(π) denotes the transformed

payoff. Note that the symbolic function $·% rounds the fraction to the nearest integer. For example,

if ε = 0.5, then the payoff pair (π1, π2) = (2.2, 3.7) would be transformed to (D (π1) , D (π2)) =

(2, 3.5). We then construct a vector (one for each model) consisting of the relative frequency of

each of the transformed payoffs given some ε. We do the same for the experimental data. To

determine how far the predictions of each model are from the experimental data, we calculate the

Euclidean distance between the specific model’s vector and the vector of the experimental data.

If the predictions match the experimental data perfectly, then the distance will have a value of

0.8 The maximum value of distance is
√
2 for each game. This value is attained if only one payoff

is predicted by the model, only one payoff is observed in the experiment, and the two payoffs are

different. Crucially, for a given model and discretization parameter ε, we define the best goodness

of fit model as the one whose parameter values minimize the sum of Euclidean distances across

the four games studied.

7Recall that in the experiments of Mathevet and Romero (2012), whose dataset we use to validate the predictions
of the models, subjects were instructed that the continuation probability for an additional period was 0.99; in
expectation, the length of game-play is 100 periods, which matches the length of the computational simulations in
the experimental phase.

8There are many standard statistical procedures for comparing models. For example, the Mean Squared Distance
(MSD) criterion calculates the average squared distance between the predicted choice proportion and the observed
choice proportion in the relevant game. The lower the MSD, the closer the choice predictions of the model to the
observed behaviors. Our measure is similar to the MSD criterion albeit the MSD criterion requires discrete payoff
choices; thus, we first need to discretize the set of possible payoffs before using the Euclidean metric. Another
popular one is the Akaike Information Criterion, which penalizes theories with more degrees of freedom. Given
that the comparison in this study is within models and not, across models, the simple criterion chosen suffices.
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4 Action Learning

We implement the proposed methodology by building on three proven action learning models:

a self-tuning Experience Weighted Attraction model (Ho, Camerer, and Chong (2007)), a γ-

Weighted Beliefs model (Cheung and Friedman (1997)), and an Inertia, Sampling and Weighting

model (Erev, Ert, and Roth (2010)).9 Henceforth, for brevity, we refer to the three models by

their acronym: STEWA, γ-WB and I-SAW, respectively. In Table 2, we summarize the basic

characteristics of each model, describe the parameters used in each model and highlight the mod-

ifications implemented to facilitate operability of the models with repeated-game strategies (a

detailed description of each model can be found in Appendix C).

The STEWA model builds on the Experience Weighted Attraction model of Camerer and Ho

(1999) to address criticisms that the prototype model had “too” many free parameters. The

STEWA model fixes instead some parameters at plausible values and replaces others with func-

tions of experience that self-tune. The γ-WB model is a simple belief learning model that includes

Cournot best-response (Cournot (1960)) and fictitious play (Brown (1951)) as special cases. Fi-

nally, I-SAW is an instance-based model that captures behavioral regularities that have been

observed in studies of individual decisions from experience and Market Entry games.10 In each

period, a player enters one of three response modes (exploration, inertia and exploitation) with

certain probabilities. The exploration mode enables a player to experiment with different actions,

whereas the inertia mode repeats a player’s most recent action. Finally, in the exploitation mode,

a player calculates a weighted average of payoffs (based on formulated beliefs) to select the action

with the highest value. All three models assume reliance on previous experiences, which has been

documented to capture subjects’ behavior better than models, such as reinforcement learning that

do not assume memory of and/or reliance on specific experiences (see Erev, Ert, and Roth (2010)).

In Figure 2, the predictions of the three action learning models are validated with the experi-

mental data from Mathevet and Romero (2012). We display the plots for the parameters that led

to the best goodness of fit across all games.11 The prevalent outcome in the experimental data

9We raise the bar of assessment high enough by using leading models, which have been quite successful in
documenting subjects’ behavior. For instance, Chmura, Goerg, and Selten (2012) noted recently that “the good
performance of the self-tuning EWA on the individual level is remarkable” (p. 60). Moreover, the γ-WB model was
documented to track players’ behavior well across a multitude of games and information conditions (see Cheung
and Friedman (1997)). Finally, I-SAW was the best baseline in the Market Entry Prediction Competition of Erev,
Ert, and Roth (2010).

10The behavioral regularities documented include: the payoff variability effect, high sensitivity to forgone pay-
offs, underweighting of rare events, strong inertia and surprise-triggers-change, the very recent effect, individual
differences (see Erev, Ert, and Roth (2010) and Erev and Haruvy (2013)).

11To determine the parameters of the model that fit the data best, we ran a grid search over different parameter
values. The parameters for each of the action learning models are described in Table 2. For the single parameter
λ in the action STEWA model, we performed a grid search over λ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}. The
action γ-WB model has two parameters: γ and λ. We performed a grid search over γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
λ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Finally, the action I-SAW model has six parameters: ε,π,ω, ρ, pA, and µ. To
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Self-Tuning Experience
Weighted Attraction

γ-Weighted Beliefs
Inertia, Sampling and

Weighting

Reference Ho, Camerer, and Chong (2007) Cheung and Friedman (1997) Erev, Ert, and Roth (2010)

Acronym STEWA γ-WB I-SAW

Description This model is a hybridized workhorse
of adaptive learning combining ele-
ments of belief learning and reinforce-
ment learning. Each action in a
player’s action set has an attaraction,
which is updated at the end of each
period. An action is selected via the
logistic choice function, where actions
with higher attractions are dispropor-
tionately more likely to be selected.

Initially, a player’s beliefs on the op-
ponent’s actions are formulated by
discounting previous play with pa-
rameter γ. Once the beliefs are for-
mulated, the expected payoff of each
potential action is calculated. Finally,
a player selects an action via the lo-
gistic choice function, where actions
yielding higher expected payoffs are
disproportionately more likely to be
selected.

This model is an instance-based
model, which allows for three re-
sponse modes: exploration, inertia
and exploitation. In each period, a
player enters one of the modes with
certain probabilities. In the explo-
ration mode, an action is randomly
chosen. In the inertia mode, the
last action is repeated with some
probability that depends on surprise.
Finally, in the exploitation mode, a
player calculates a weighted average
of payoffs (based on formulated
beliefs) to select the action with the
highest value.

Parameters • λ - logistic function parameter that
determines sensitivity when choosing
from attractions.

• λ - logistic function parameter that
determines sensitivity when choosing
from attractions.
• γ - discounting parameter for
previous actions when determining
beliefs.

• pA - probability of choosing action
A when exploring.
• εi - probability that an agent
explores in a given period.
• πi - used to determine the proba-
bility that an agent has inertia in a
given period.
• µi - number of samples taken by
an agent from the history when
determining the sample mean of the
estimated subjective value.
• ρi - the probability that an agent
takes his opponent’s last action when
determining the sample mean of the
estimated subjective value.
• ωi - the fraction of weight put on
the grand mean in the estimated
subjective value.

Proposed
Modifications

• Replace actions with strategies.
• Use pre-experimental stage to
develop initial attractions.

• Replace actions with strategies.
• Use pre-experimental stage to
develop initial attractions.

• Replace actions with strategies.
• Use pre-experimental stage to
develop initial attractions.
• Endogenize probability of inertia,
which reduces model by one parame-
ter (π).
• Assume that a player chooses
randomly over all strategies during
exploration, which reduces model by
one parameter (pA).

Table 2: Models
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Figure 2: Action Learning Models in the Experimental Phase & Experimental Data

Notes: We validate the predictions of the three action learning models in the experimental phase with human

data from the experiments of Mathevet and Romero (2012). The computational simulations and the experimental

results with human subjects show the relative frequency of each payoff combination over the last 10 periods of

game-play. The relative frequency of a payoff combination is denoted by a circle located on the coordinates that

correspond to that combination; the larger the circle, the higher the (relative) frequency of that combination. We

also display the set of feasible payoffs.
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in the Prisoner’s Dilemma game is for subjects to mutually cooperate, albeit there is also a large

number of subjects who end up at the mutual defection outcome. The action learning models

in Figure 2 only predict mutual defection. Furthermore, in the Battle of the Sexes game, the

prevalent outcome in the experimental data is alternations between the two pure-strategy Nash

equilibria. A small number of subjects end up at one of the two symmetric pure-strategy Nash

equilibria and a few subjects end up at the (1.0, 1.0) payoff. The action learning STEWA and

γ-WB models only predict convergence to one of the two symmetric pure-strategy Nash equilibria.

The I-SAWmodel with action learning predicts neither convergence to one of the two pure-strategy

symmetric Nash equilibria nor alternations between the two pure-strategy Nash equilibria. In the

Stag-Hunt game, the prevalent outcome is for subjects to converge to the payoff-dominant Nash

equilibrium. Figure 2 shows that only the action learning STEWA is able to predict clearly that

pairs will converge to such outcome. The other two action learning models predict that only a

small number of pairs will end up at the payoff-dominant Nash equilibrium. Finally, none of

the action learning models in Figure 2 is able to predict that a significant number of pairs will

converge to the mutual conciliation outcome in the Chicken game. (The goodness-of-fit results for

the experimental phase of the three action learning models are shown in Table 3.)

5 Strategy Learning

To simplify exposition, we start with some notation. The stage game is represented in standard

strategic (normal) form. The set of players is denoted by I = {1, ..., n}. Each player i ∈ I has

an action set denoted by Ai. An action profile a = (ai, a−i) consists of the action of player i,

and the actions of the other players denoted by a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ A−i. In addition,

each player i has a real-valued, stage-game, payoff function gi : A → R, which maps every action

profile a ∈ A into a payoff for i, where A denotes the cartesian product of the action spaces Ai,

written as A ≡
I
×
i=1

Ai. In the infinitely-repeated game with perfect monitoring, the stage game in

each time period t = 0, 1, ... is played with the action profile chosen in period t publicly observed

at the end of that period. The history of play at time t is denoted by ht = (a0, ..., at−1) ∈ At,

where ar = (ar1, ..., a
r
n) denotes the actions taken in period r. The set of histories is given by

H =
∞⋃

t=0

At,

find the best goodness of fit for the action I-SAW model, we conducted a grid search over the suggested parameter
range in Erev, Ert, and Roth (2010). The parameters searched over were ε ∈ {0.2, 0.24, 0.3}, π ∈ {0.4, 0.5, 0.6},
ω ∈ {0.6, 0.7, 0.8}, ρ ∈ {0.1, 0.2, 0.3}, pA ∈ {0.4, 0.5, 0.6} and µ = 3. The parameters that maximized goodness of
fit were λ = 1.5 for STEWA; γ = 0.1 and λ = 3 for γ-WB; and ε = 0.2,π = 0.6,ω = 0.8, ρ = 0.1, pA = 0.6 and
µ = 3 for I-SAW.
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where we define the initial history to the null set A0 = {∅}. A strategy si ∈ Si for player i is,

then a function si : H → Ai, where the strategy space of i consists of Ki discrete strategies; that

is, Si = {s1i , s2i , ..., s
Ki
i }. Furthermore, denote a strategy combination of the n players except i by

s−i = (s1, ..., si−1, si+1, ..., sn). Each player i has a payoff function πi : S → R, which maps every

strategy profile s = (si, s−i) ∈ S into a payoff for i, where S denotes the cartesian product of the

strategy spaces Si. Finally, player i’s payoff in period t is denoted as πi(si(t), s−i(t)).

5.1 Generalized Repeated-Game Strategy Space

Our motivation to use generalizable rules is twofold. First, as highlighted in the Introduction,

a large number of strategies is impractical for updating under most existing learning models.

Instead, generalizable rules require a relatively small strategy set, which may implicitly encompass

a larger space (see for instance, Stahl’s rule learning). Second, we desire to reflect elements of

bounded rationality and complexity as envisioned by Simon (1947). Bounded rationality suggests

that a player may not consider all feasible strategies, but limit himself instead to less-complex

strategies. We thus propose a generalized repeated-game strategy space where players’ strategies

are implemented by a type of finite automaton.12 The specific type of finite automaton used here is

a Moore machine. A Moore machine for player i, Mi, in a repeated game G = (I,{Ai}i∈I , {gi}i∈I)
is a four-tuple (Qi, q

0
i , fi, τi) where Qi is a finite set of internal states of which q0i is specified

to be the initial state, fi : Qi → Ai is an output function that assigns an action to every state,

and τi : Qi ×A−i → Qi is the transition function that assigns a state to every two-tuple of state

and other player’s action. This approach reduces the set of theoretically possible strategies to a

manageable size. To see this, note that the machines make state transitions only in response to

the actions of their opponents, but not to their own actions.13 In Figure 3, we depict a player’s

strategy set, which consists of one-state and two-state automata. A more detailed exposition on

finite automata can be found in Appendix D.

12Using finite automata as the carriers of agents’ strategies was first suggested by Aumann (1981). The first
application originated in the work of Neyman (1985) who investigated a finitely-repeated-game model in which the
pure strategies available to the agents were those that could be generated by machines utilizing no more than a
certain number of states.

13Such automata are called full automata. On the other hand, exact automata do not have this restriction (as in
Kalai and Stanford (1988)).
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Figure 3: One-State and Two-State Automata
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5.2 Mapping Between Histories and Repeated-Game Beliefs

Strategy learning models face a tough impediment in that beliefs are not directly observable. In

the context of our proposed framework, we indicate next how beliefs are specified.14 To determine

the beliefs, let h (t1, t2) = (at1 , at1+1, . . . , at2) for t1 ≤ t2 be the truncated history between periods

t1 and t2 (all inclusive) and h (t, t− 1) = ∅ be the empty history. Also, let Ti(χ) =
∑χ

j=1 Ti(j) be

the total number of periods at the end of player i’s block χ, where Ti(j) is the jth block’s length

for player i. Then, strategy s−i is consistent with hTi(χ) for the last t′ periods if

s−i (h (Ti(χ)− t′, Ti(χ)− t′ − 1 + r)) = a
Ti(χ)−t′+r
−i for r = 0, . . . , t′ − 1.

Define the fitness function F : S−i × N → [0, Ti(χ)] as
15

F (s−i,χ) = max
{
t′|s−i is consistent with hTi(χ) for the last t′ periods

}
.16

Define the belief function B : S−i × N → [0, 1] as

B(s−i,χ) =
F(s−i,χ)∑

r∈S−i

F(r,χ)
,

which can be interpreted as player i’s belief that the other player was using repeated-game strategy

s−i at the end of block χ. Once the beliefs over repeated-game strategies have been determined,

player i can calculate his expected (foregone) payoff. The expected (forgone) payoff for player i

of repeated-game strategy j over the χth block is given by

E j
i (χ) =

∑

s−i∈S−i

πi(s
j
i , s−i|h(s−i,χ)) · B(s−i,χ),

where s−i|h is the continuation strategy induced by history h and

14Our specification of beliefs is different from the one in Chong, Camerer, and Ho (2006). In that study, a
sophisticated lender holds a belief about the overall fraction of honest borrowers. Once the sophisticated lender
chooses loan, his belief is updated in a Bayesian manner using borrower’s choice probabilities. Our approach is
more generalizable compared to the one advocated in that model, which is context-specific.

15We consider alternative fitness specifications in Appendix F.2.
16In the context of finite automata, let ht

i(χ) be player i’s action in the tth period of block χ, and s−i =(
Q−i, q

0
−i, f−i, τ−i

)
be a potential automaton for player −i. We say automaton s−i is consistent with h(χ) for the

last t′ periods, if according to the history, it is possible that the other player played automaton s−i in the last
t′ periods and, given player i’s most recent action, the proposed automaton is in the starting state. Formally,
automaton s−i is consistent with h(χ) for the last t′ periods if there exists some state qt ∈ Q−i such that ht

−i(χ) =

f−i (q
t) and qt+1 = τ−i (q

t, ht
i(χ)) for all Ti(χ) − t′ + 1 ≤ t ≤ Ti(χ) and qTi(χ)+1 = q0. Note that our approach

to fit action profiles onto repeated-game strategies implemented by finite automata is similar to the approach
Engle-Warnick and Slonim (2006) used to infer subjects’ strategies in the repeated Trust game.
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h (s−i,χ) = h (Ti(χ)− F (s−i,χ) , Ti(χ)− 1)

is the longest history such that s−i is consistent with hTi(χ).

5.3 Asynchronous Updating of Repeated-Game Strategies

Our formulation relaxes the synchronicity-of-updates constraint between the players, which is

standard in the traditional action learning models; instead, players update their repeated-game

strategies with the completion of a block of periods. The basic idea is that the probability of

updating the strategy set depends on the expected block length, which is calculated at the end

of each period. A long expected block length implies that a player is expecting to implement

the specific repeated-game strategy for a longer time period than when the player has a short

expected block length. In practice, when a player has a long expected block length, it means that

the probability of updating his strategy set (or the probability of terminating the block) at the

end of a period is lower than when the player has a short expected block length. The probability

that player i updates his strategy set in period t, 1
Pt
i
, is therefore determined endogenously via the

expected length of the block term, P t
i , which is updated recursively; that is,

P t
i = P t−1

i − 1

P t−1
i

∣∣∣ 1
t−t(χ(t))

∑t−1
s=t(χ(t)) gi(a

s
i , a

s
−i)− Esi(χ(t))

i (χ(t))
∣∣∣

ḡ − g
,

where t(χ) is the first period of block χ, and χ(t) is the block corresponding to period t. In

addition, ḡ = maxa1,a2,j gj (a1, a2) is the highest stage-game payoff attainable by either player,

and g = mina1,a2,j gj (a1, a2) is the lowest stage-game payoff attainable to either player. The

normalization by 1
ḡ−g

ensures that the expected block length is invariant to affine transformations

of the stage-game payoffs. The variable P t
i begins with an initial value P0

i . This prior value can

be thought of as reflecting pre-game experience, either, due to learning transferred from other

games, or due to (publicly) available information. The law of motion of the expected block length

depends on the absolute difference between the actual average payoff thus far in the block and

the expected payoff of strategy si. The expected payoff for player i, Esi(χ(t))
i (χ(t)), is the average

payoff that player i expects (anticipates) to receive during block χ(t) and is calculated at the

beginning of the block.17 The difference between actual and expected payoff is thus a proxy for

(outcome-based) surprise. If a player receives a payoff similar to his expectations, then surprise is

low hence the probability of updating the strategy set increases by a relatively small amount. On

17Notice that the expected payoff is taken over the expected block length and no more. In line with Jéhiel (1995)
and Jéhiel (1998), our approach assumes that players have a limited ability to forecast the future. Naturally, the
average payoff is obtained over the length of the foresight.
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the other hand, if a player receives a payoff that is drastically different from his expectations, then

surprise is high hence the probability of updating the strategy set increases by a relative large

amount. As Erev and Haruvy (2013) indicate, surprise triggers change; that is, inertia decreases in

the presence of a surprising outcome.18 In addition, we impose a qualitative control on the impact

of surprise on the expected block length. Multiplying the absolute difference by 1
Pt−1
i

ensures that

when the expected block length is long, surprise has a smaller impact on the expected block length

than when the expected block length is short.

An alternative approach is to impose simultaneous strategy-updates for all players. We feel

that such a venue, even though substantially simpler, would constitute a major shortcoming of

the proposed model and its power as a behavioral model. First, such direction would imply that

players would enter some sort of (possibly illegal!) contract before commencing the game. Second,

such contract would need to be binding; otherwise, why would a player adhere to it? For instance,

a player whose strategy has not been performing well, may have a change of heart and decide

to update prematurely. Simultaneous strategy-updates would disallow such change of strategy.

For these reasons, we prefer to forego simplicity in order to present a behavioral model, which

is general and does not require unrealistic modeling assumptions. (Nevertheless we consider an

approach with simultaneous strategy-updates in Appendix F.1 to highlight the value-added of the

proposed approach with asynchronous updating of repeated-game strategies.)

6 Results

6.1 Strategy Learning Models in the Experimental Phase

The results at the end of the pre-experimental phase parallel the knowledge subjects bring to

the laboratory before the actual game-play begins. On the other hand, the experimental phase

parallels the actual game-play. In the first period of the experimental phase, players are randomly

rematched. Afterwards, pairs stay matched for 100 periods. In Figure 4, the predictions of the

three strategy learning models are validated with the experimental data. We display the plots

for the parameters that led to the best goodness of fit across all games.19 The results displayed

18Note that this gap-based abstraction can be justified from the observation that the activity of certain dopamine
related neurons is correlated with the difference between the expected and actual outcomes (see Schultz, Dayan,
and Montague (1997), and Caplin and Dean (2007)).

19The procedure for the simulations of the strategy learning models closely matches that of the action learning
models presented earlier. The goodness of fit measures how close the last 10 periods of the experimental phase
are to the experimental data using the same approach described in Section 3. Across all strategy learning models,
the initial value of P0

i is set to 100 at the beginning of both the pre-experimental and experimental phase. To
determine the parameters of the model that fit the data best, we ran a grid search over different parameter values.
For the one-parameter strategy STEWA model, the grid search covered λ ∈ {2, 2.75, 3, 3.25, 3.5, 4, 5, 6, 9, 12}.
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Figure 4: Strategy Learning Models in the Experimental Phase & Experimental
Data

Notes: We validate the predictions of the three strategy learning models in the experimental phase with human

data from the experiments of Mathevet and Romero (2012). The computational simulations and the experimental

results with human subjects show the relative frequency of each payoff combination over the last 10 periods of

game-play. The relative frequency of a payoff combination is denoted by a circle located on the coordinates that

correspond to that combination; the larger the circle, the higher the (relative) frequency of that combination. We

also display the set of feasible payoffs.
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are averages taken over the last 10 periods of game-play. Subjects predominantly cooperate in

the Prisoner’s Dilemma game. However, there is also a large number of subjects who end up at

the mutual defection outcome. The strategy learning models in Figure 4 are able to deliver both;

that is, they predict convergence to the mutual cooperation outcome as well as convergence to

the mutual defection outcome. Strategy learning models support sophisticated behaviors, such

as punishments for non-conformity to the cooperative outcome that drive many pairs to select

strategies that converge to the cooperative outcome. We also note that all three models predict

that a small number of pairs will end up at the symmetric payoff (3.0, 1.5). The latter payoff

is not supported by the experimental data yet arises in the simulations when Automaton 2,

which implements the “Always Defect” strategy is paired with Automaton 5, which implements

the “Win-Stay, Lose-Shift” strategy. Such a pair alternates between (B,A) and (B,B). In the

Battle of the Sexes game, subjects predominantly alternate between the two pure-strategy Nash

equilibria. A small number of subjects ends up at one of the two symmetric pure-strategy Nash

equilibria and a few subjects end up at the (1.0, 1.0) payoff. These trends are supported by all

three strategy learning models. The ability of the strategy learning models to predict convergence

to alternations between the two pure-strategy Nash equilibria can be attributed to the richer

specification of strategies. We also note that the models predict that a small number of pairs

will end up at the symmetric payoff (2.5, 1.5). The latter payoff occurs in the simulations when

Automaton 2, which implements the “Always B” strategy is paired with Automaton 24, which

switches actions every period. Such a pair alternates between (B,B) and (B,A). Even though

the latter pair is not supported by the experimental data, there are points in the experimental

dataset that end up quite close. In the Stag-Hunt game, the prevalent outcome is for subjects to

converge to the payoff-dominant Nash equilibrium. All three strategy learning models are able to

make crisp predictions on the convergence to the payoff-dominant Nash equilibrium as shown in

Figure 4. In the Chicken game subjects converge to the mutual conciliation outcome, which is

also predicted by the three strategy learning models.

The goodness-of-fit results for the experimental phase are shown in Table 3. The results

displayed pertain the parameter values that minimize the total Euclidean distance across all

four games. The table shows that the strategy learning models approximate subjects’ behavior

substantially better than their respective action learning models.20 In particular, all three strategy

For the strategy γ-WB model with parameters γ and λ, the grid search covered γ ∈ {0.6, 0.7, 0.75, 0.8, 0.9} and
λ ∈ {12, 15, 18, 21, 22, 23, 23.5, 24, 24.5, 25, 26, 27, 30}. Finally, as described in Table 2, the strategy I-SAW model
has only four parameters relative to the six parameters of the action I-SAW model. The grid search was therefore
performed over εi ∈ {0, 0.0005, 0.001}, ρi ∈ {.7, .9, 1}, ω ∈ {0.1, 0.3, .5, 0.7} and µi = 3. The parameters that
maximized goodness of fit for the strategy learning models were λ = 3 for STEWA; γ = 0.7 and λ = 23 for γ-WB;
and ε = 0, µ = 3,ω = 0.1 and ρ = 1 for I-SAW.

20This finding is robust to all values of ε. Figure 12 in Appendix G displays the minimized total Euclidean
distance for the entire range of ε across the four games.
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learning models do unequivocally better across all four games relative to their action learning

counterparts.

STEWA γ-WB I-SAW

Game Action Strategy Action Strategy Action Strategy

Prisoner’s Dilemma 0.532 0.228 0.535 0.237 0.486 0.257

Battle of the Sexes 0.642 0.126 0.580 0.153 0.531 0.455

Stag-Hunt 0.191 0.165 0.782 0.122 0.614 0.140

Chicken 0.698 0.326 0.679 0.381 0.773 0.221

Total 2.064 0.846 2.575 0.893 2.404 1.073

Table 3: Strategy Learning vs. Action Learning

Notes: We compare the three models with repeated-game strategies and the respective models with action learning

to the experimental data for an ε = 0.5. The columns indicate the Euclidean distance between the experimental

data and the respective predictions of the three models across each game. The red columns indicate the distance

between the experimental data and the predictions of the action learning models, whereas the blue columns indicate

the distance between the experimental data and the predictions of the strategy learning models. If the predictions

matched the data perfectly, then the distance in a game would have been 0. Note that to calculate each model’s

total Euclidean distance, we located the parameters that led to the best goodness of fit (minimum total Euclidean

distance) across all four games.

6.2 Importance of Pre-Experimental Phase

One may wonder whether developing initial attractions via the pre-experimental phase is impor-

tant in driving the results highlighted in the experimental phase. We examine the necessity of the

pre-experimental phase in this subsection. In particular, we run a baseline experimental phase in

which players do not participate in the pre-experimental phase, but rather start the experimental

phase without any experience. The results are displayed in Table 4. The first row is reproduced

from Table 3 and indicates the total Euclidean distance between the experimental data and the

predictions of the strategy learning models for the last 10 periods. The second row indicates

the total Euclidean distance between the experimental data and the predictions of the strategy

learning models when there is no pre-experimental phase. All results are based on a discretization

parameter ε = 0.5. The total Euclidean distance without the pre-experimental phase is 1.669,

1.603, and 1.292 for STEWA, γ-WB, and I-SAW, respectively. On the other hand, the total Eu-
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clidean distance with the pre-experimental phase is 0.846, 0.893 and 1.073 for STEWA, γ-WB,

and I-SAW, respectively. Therefore, in the simulations without the pre-experimental phase, the

models’ fit is relatively poorer, which necessitates the importance of developing initial attractions

via the pre-experimental phase.

STEWA γ-WB I-SAW

With Pre-Experimental Phase 0.846 0.893 1.073

Without Pre-Experimental Phase 1.669 1.603 1.292

Table 4: Effect of Pre-Experimental Phase on Fit

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the

respective predictions of the models in the experimental phase across all four games. The first row is reproduced

from Table 3 and indicates the total Euclidean distance between the experimental data and the predictions of the

strategy learning models for the last 10 periods. The second row indicates the total Euclidean distance between

the experimental data and the predictions of the strategy learning models when there is no pre-experimental phase.

All results are based on a discretization parameter ε = 0.5. If the predictions matched the data perfectly, then the

distance would have been 0.

6.3 Inferred Rules of Behavior

The extension from actions to a simple class of repeated-game strategies improves significantly the

predictions of the models in the games studied. It is also informative to compare the repeated-game

strategies predicted by the models with the inferred repeated-game strategies in the experimental

data. However, inferring repeated-game strategies either from the simulated or experimental data

is inhibited by two serious hurdles. First, the set of possible strategies in repeated games is

infinite. Second, only one finite history is observed and therefore no information is derived with

respect to what would have been played under other histories. Identifying ex ante a subset of

repeated-game strategies overcomes the first problem. To overcome the second problem we use a

simple approach. We focus on specific rules of behavior to see what percentage of the simulated

(actual) histories could have been generated by the specific rule over the last 10 periods of the

interaction in the experimental phase (experiments).21 Given that our focus is on the last 10

21Previous studies overcame the second problem using either the method of strategy elicitation (Selten, Mitzke-
witz, and Uhlich (1997) and Dal Bó and Fréchette (2013)) or direct inference (Engle-Warnick and Slonim (2006)
and Aoyagi and Fréchette (2009)). These methods are not applicable here. For one, strategies were not elicited in
the experiments of Mathevet and Romero (2012). Furthermore, the continuation probability in the experiments of
Mathevet and Romero (2012) was too high to allow for direct inference in the context suggested, for instance, by
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periods of the interaction, rather than focusing on the 26 one-state and two-state automata, we

consider the 15 corresponding rules of behavior. A rule of behavior is essentially an automaton

without information about the starting state; that is, a three-tuple (Qi, fi, τi) where Qi, fi and τi

are defined as before.22 The results are displayed in Figure 5. The names of the rules of behavior

are either based on the conventional terminology or on a brief description of the behavior. Recall

that (A,A) is the cooperative outcome in all games except the Battle of the Sexes game; in the

latter game, alternations between the two pure-strategy Nash equilibria ((A,B) and (B,A)) is the

cooperative outcome.

It is important to note the remarkable ability of the rules of behavior to fit the experimental

data. A single rule of behavior is able to explain the play of 80%, 62%, 95%, and 79% of the subjects

in the Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt and Chicken experiments, respectively.

This provides strong evidence to support the claim that subjects are playing strategies leading to

histories similar to the histories generated by the finite automata. In addition, we also observe

a clear pattern between the simulated data and the experimental data. Rules of behavior that

are able to explain a high percentage of the simulated data, are also able to explain a high

percentage of the experimental data. Similarly, rules of behavior that explain a low percentage of

the simulated data explain a low percentage of the experimental data. While this does not ensure

that the inferred rules of behavior used by human subjects are the same as those inferred in the

simulations, it does provide additional evidence that the rules that emerge in the simulations

capture well the behavior of subjects in the laboratory.

Dal Bó and Fréchette (2013) resolved the issue of inferring the repeated-game strategies of

the experimental subjects in the infinitely-repeated Prisoner’s Dilemma game by asking them to

design directly repeated-game strategies. The constructed repeated-game strategy of each subject

would then be deployed to play the game in lieu of himself. Dal Bó and Fréchette found that

subjects chose common cooperative repeated-game strategies, such as “Tit-For-Tat” and “Grim-

Trigger.” Looking at Figure 5, we see that in the Prisoner’s Dilemma game, the two rules of

behavior that attained the highest percentages in the experimental data were (4,19) and (6), each

rule with 80%. The first rule of behavior implements a “Tit-For-Tat” strategy and the second rule

implements the “Grim-Trigger” strategy. The same two rules are prevalent in the three strategy

learning models. The rule of behavior corresponding to “Tit-For-Tat” is consistent with 63%,

62% and 59% of the STEWA, γ-WB and I-SAW, respectively. Even better, the rule of behavior

Engle-Warnick and Slonim (2006). In particular, in the latter study the continuation probability was 0.8, which
implies an expected 5 periods of game-play. On the other hand, the continuation probability in the experiments of
Mathevet and Romero (2012) was 0.99, which implies an expected 100 periods of game-play. Consequently, unless
errors are allowed, it is impractical to fit such long sequences of action profiles onto repeated-game strategies. Thus,
we truncate the sequence of action profiles to retain the last 10 action profiles in the sequence.

22An alternative interpretation is that a rule of behavior reflects recognition of a pattern (see Spiliopoulos (2012)
and Spiliopoulos (2013)).
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Figure 5: Inferred Rules of Behavior

Notes: The first column indicates the rule of behavior, whereas the second column indicates equivalent automata

in the sense that they implement the same underlying behavior (as displayed in Figure 3) and either the rule’s

name or a brief description of the rule. Finally, the remaining four columns (one for each game) show with bar

charts the percentage of the simulated (actual) histories that could have been generated by the specific rule over

the last 10 periods of the interaction in the experimental phase (experiments). The rules of behavior are sorted in

order of prevalence in the experimental data across all four games.
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corresponding to “Grim-Trigger” is consistent with 76%, 73% and 77% of the STEWA, γ-WB and

I-SAW, respectively. These results provide further evidence that the simulations are capturing

rules of behavior similar to those applied in the laboratory. In the Battle of the Sexes game, the

four most prevalent rules of behavior in the experimental data are: (3,18), (4,19), (11,14) and

(12,25). The STEWA and γ-WB models capture well the precise same four rules of behavior,

whereas the I-SAW model also displays high percentages in (6) and (10). Finally, similar to the

Prisoner’s Dilemma game, in the Stag-Hunt and Chicken games, rules of behavior (4,19) and (16)

display the highest percentages. The strategy learning models in addition to the latter two rules

of behavior also infer rules (1,15), (3,18), (5,20), (16) and (17). A common trait of all of these

rules is that they are cooperative.

7 Conclusion

We propose a methodology in order to facilitate operability of belief learning models with repeated-

game strategies. The methodology proposed is generalizable to a broad class of repeated games.

We implement it by building on three proven action learning models: a self-tuning Experience

Weighted Attraction model, a γ-Weighted Beliefs model, and an Inertia, Sampling and Weighting

model. Additionally, their predictions with repeated-game strategies are validated with data from

experiments with human subjects across four, symmetric 2×2 games: Prisoner’s Dilemma, Battle

of the Sexes, Stag-Hunt, and Chicken. The models with repeated-game strategies approximate

subjects’ behavior substantially better than their respective action learning models. Furthermore,

we find that inferred rules of behavior in the experimental data coincide with those inferred in the

strategy learning models. More specifically, in the Prisoner’s Dilemma, Stag-Hunt, and Chicken,

cooperative rules of behavior “Grim-Trigger” and “Tit-For-Tat” emerge as the most prevalent in

the experimental dataset and the simulations, whereas in the Battle of the Sexes, cooperative

rules implementing alternation between the two pure-strategy Nash equilibria emerge as the most

prevalent in the experimental dataset and the simulations.

Ideally, the success of the proposed methodology will have to be evaluated across two important

dimensions. First, it should be tested across a much broader array of games and models. Second, it

should be tested under more complex environments with less tight strategy-complexity constraints.

In this study, our focus has been capturing subjects’ behavior in simple games, which required

incorporating elements of bounded rationality via tight complexity constraints. However, there

exists a plethora of situations where the agents’ strategies might be more complicated. In such a

case, our methodology would need to be revised to allow the use of automata carrying more than

two states in order to capture more sophisticated strategies. It is important to highlight that as
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the number of repeated-game strategies considered increases, the weight placed on a particular

strategy will decrease. Consequently, for a large enough set of repeated-game strategies, the weight

for any given strategy will approach zero. However, the fitness function proposed allows repeated-

game strategies with similar characteristics to be grouped together, and though the weight on each

strategy will indeed be small, the weight on the class of strategies will still be significant. For

example, there may be a large number of repeated-game strategies that are reciprocal cooperators

in the Prisoner’s Dilemma game, and though the weight on each individual strategy could be

small, the weight on the class of reciprocal cooperating strategies would still be large enough to

make a player want to continue cooperating. Having said this, we do acknowledge that a fruitful

direction for future research would be to reduce the centrality of finite automata as the carriers of

agents’ strategies.23 Finally, another direction for future research would be to allow automata to

commit errors. In this study, we assumed that agents’ strategies were implemented by error-free

automata. Agents, in real life, engage in actions that are constrained by the limitations of human

nature and the surrounding environment. Thus, it would be interesting to test the susceptibility

of the results to small amounts of perception and implementation errors.

23For instance, the cut-off strategies of Friedman and Oprea (2012) cannot be operationalized by finite automata.
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A Experimental Data

Mathevet and Romero (2012) provide experimental data on the four games reported in Figure 1. The

experimental sessions were run at the Vernon Smith Experimental Economics Laboratory at Purdue

University. Subjects interacted on computers using an interface that was programmed with the z-Tree

software (Fischbacher (2007)). Subjects’ final payoffs consisted of the sum of their earnings from all

periods of the experiment. With the completion of the experiment, subjects were paid in private their

cash earnings. The average payoff was $16.85. The game-play consisted of a fixed matching protocol. The

continuation probability for an additional period was 0.99 and was common knowledge in all experimental

sessions. The experimental data consist of 37, 39, 20 and 38 observations in the Prisoner’s Dilemma game,

Battle of the Sexes game, Stag-Hunt game and Chicken game, respectively. The experimental data points

displayed below are the average payoffs per pair over the last 10 periods of game-play.
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PD 17 11 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 37

BO 20 0 3 3 0 0 2 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 39

SH 17 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

CH 24 0 0 0 2 0 0 2 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 38

Table 5: Experimental Data
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B Convergence Details

The convergence details of the strategy learning models in the pre-experimental phase are displayed in

Table 6. The details are displayed for the parameters that minimized the Euclidean distance in the

experimental phase of the simulations. Recall that each simulation is broken up into epochs of 100

periods. The simulation runs until the average epoch payoff of the pair has not changed by more than

0.01 from the previous epoch (in terms of Euclidean distance) in 20 consecutive epochs, or 50,000 periods,

which ever occurs first. For the Prisoner’s Dilemma game and the Stag-Hunt game, all of the simulations

converged within 50,000 periods. In the Battle of the Sexes a significant number of the simulations did

not converge within 50,000 periods. The pairs that did not converge according to the criteria had both

players playing their preferred action B repeatedly in, essentially, a war of attrition, while waiting for

the other player to give in. This led to an average payoff of (1.0, 1.0) over the course of the epoch.

However, even one deviation from this payoff over the 100-period epoch led to a payoff different enough

that did not satisfy the convergence criterion. Some of the simulations of the strategy I-SAW model did

not converge according to the criterion in the Chicken game. Pairs in these simulations were playing the

mixed strategy Nash equilibrium, which led to relatively unstable epoch payoffs.

STEWA γ-WB I-SAW

Game Average %NC Average %NC Average %NC

Prisoner’s Dilemma 20,750 0 14,582 0 14,332 0

Battle of the Sexes 28,459 41 21,416 15 32,979 58

Stag-Hunt 7,171 0 3,387 0 2,117 0

Chicken 8,704 3 4,044 0 23,252 42

Table 6: Details on Convergence in the Pre-experimental Phase

Notes: The two columns of each strategy learning model contain details about the average number of periods to

convergence and the percentage of the simulations that did not converge within 50,000 periods. The convergence

details are displayed for the parameters that minimized the Euclidean distance in the experimental phase.
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C Models with Strategy Learning

We implement the proposed methodology to three proven action learning models: the self-tuning Expe-

rience Weighted Attraction model of Ho, Camerer, and Chong (2007), the γ-Weighted Beliefs model of

Cheung and Friedman (1997) and the Inertia, Sampling and Weighting model of Erev, Ert, and Roth

(2010). The details on the modeling assumptions are provided below.

C.1 Self-tuning Experience Weighted Attraction (STEWA)

A detailed exposition of the STEWA model with actions can be found in Ho, Camerer, and Chong

(2007). Analogous to the latter model, the STEWA model with strategies also consists of two variables

that are updated once an agent switches strategies. The first variable is Ni(χ), which is interpreted as

the number of observation-equivalents of past experience in block χ of player i. The second variable,

denoted as Aj
i (χ), indicates player i’s attraction to strategy j after the χth block of periods. The variables

Ni(χ) and Aj
i (χ) begin with some prior values, Ni(0) and Aj

i (0). These prior values can be thought of as

reflecting pre-game experience, either due to learning transferred from different games or due to pre-play

analysis. In addition, we use an indicator function I(x, y) that equals 1 if x = y and 0 otherwise. The

evolution of learning over the χth block with χ ≥ 1 is governed by the following rules:

Ni (χ) = φi(χ) ·Ni (χ− 1) + 1, (1)

and

Aj
i (χ) =

φi(χ) ·Ni (χ− 1) ·Aj
i (χ− 1) + I(sji , si (χ)) ·Ri (χ) + δji (χ) · E

j
i (χ)

φi(χ) ·Ni (χ− 1) + 1
. (2)

Reinforcement Payoff

The reinforcement payoff in the proposed model, Ri(χ), is defined as the average payoff obtained by

player i over the χth block,

Ri (χ) =
1

Ti(χ)

∑

a∈h(χ)

gi (a) ,

where h(χ) is the sequence of action profiles played in the χth block and Ti(χ) is the χth block’s length

for player i.

Expected Foregone Payoff

To calculate the forgone payoff Ej
i (χ), players need to form beliefs about the current strategy of their

opponent. To determine the beliefs, let h (t1, t2) =
(
at1 , at1+1, . . . , at2

)
for t1 ≤ t2 be the truncated

history between periods t1 and t2 (all inclusive). Also, let h (t, t− 1) = ∅ be the empty history. Let

Ti(χ) =
∑χ

j=1 Ti(j) be the total number of periods at the end of player i’s block χ. Then, strategy s−i
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is consistent with hTi(χ) for the last t′ periods if

s−i

(
h
(
Ti(χ)− t′, Ti(χ)− t′ − 1 + r

))
= a

Ti(χ)−t′+r
−i for r = 0, . . . , t′ − 1.

Define the fitness function F : S−i × N → [0, Ti(χ)] as

F (s−i,χ) = max
{
t′|s−i is consistent with hTi(χ) for the last t′ periods

}
.

Define the belief function B : S−i × N → [0, 1] as

B(s−i,χ) =
F(s−i,χ)∑

r∈S−i

F(r,χ)
,

which can be interpreted as player i’s belief that the other player was using strategy s−i at the end of

block χ. Therefore, the expected forgone payoff for player i of strategy j over the χth block is given by

Ej
i (χ) =

∑

s−i∈S−i

πi(s
j
i , s−i|h(s−i,χ)) · B(s−i,χ),

where s−i|h is the continuation strategy induced by history h and

h (s−i,χ) = h (Ti(χ)− F (s−i,χ) , Ti(χ)− 1)

is the longest history such that s−i is consistent with hTi(χ).

The Attention Function

The attention function δ(·) determines the weight placed on forgone payoffs and is represented by the

following function:

δji (χ) =
{

1 if Ej
i (χ) ≥ Ri(χ) and sji -= si(χ)

0 otherwise.

The Decay Function

The decay rate function φ(·) weighs lagged attractions. The core of the φi(·) is a “surprise index,” which

indicates the difference between the other player’s most recent strategy and the strategies he chose in the

previous blocks. The averaged belief function σ : S−i × N → [0, 1]

σ(s−i,χ) =
1

χ

χ∑

j=1

B(s−i, j)

averages the beliefs over the χ blocks that the other player chose strategy s−i. The surprise index Si(χ)

simply sums up the squared deviations between each averaged belief σ(s−i,χ) and the immediate belief

33



B(s−i,χ); that is,

Si(χ) =
∑

s−i∈S−i

(σ(s−i,χ)− B(s−i,χ))
2.

Thus, the surprise index captures the degree of change of the most recent beliefs from the historical

average of beliefs. Note that it varies from zero (when there is belief persistence) to two (when a player

is certain that the opponent just switched to a new strategy after playing a specific strategy from the

beginning). The change-detecting decay rate of the χth block is then

φi(χ) = 1− 1

2
Si(χ).

Therefore, when player i’s beliefs are not changing, φi(χ) = 1; that is, the player weighs previous

attractions fully. Alternatively, when player i’s beliefs are changing, then φi(χ) = 0; that is, the player

puts no weight on previous attractions.

Attractions

Attractions determine probabilities of choosing strategies. We use the logit specification to calculate the

choice probability of strategy j. Thus, the probability of a player i choosing strategy j, when he updates

his strategy at the beginning of block χ+ 1, is

Pj
i (χ+ 1) =

eλ·A
j
i (χ)

∑K
k eλ·A

k
i (χ)

.

The parameter λ ≥ 0 measures the sensitivity of players to attractions.

Finally, players update their strategies with the completion of a block of periods. The probability that

player i updates his strategy in period t is 1
Pt
i
and is determined endogenously via the expected length

of the block term.

C.2 γ-Weighted Beliefs Model (γ-WB)

We first review briefly the γ-WB model of Cheung and Friedman (1997) with actions. Player i’s action

set is Ai = {A,B}. Initially, a player updates his beliefs on the opponent’s actions with parameter

γ. In particular, he believes that the other player (player −i) will play action a−i after period t with

probability,

bi (a−i, t) =

∑t
r=1 γ

t−rI
(
ar−i = a−i

)
∑t

r=1 γ
t−r

.
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He then calculates the expected payoff of action ai:

Ei(ai, t) =
∑

a−i∈A−i

bi (a−i, t) gi (ai, a−i) .

Assuming that the number of observation-equivalents of past experience is given by Ni(0) = 1 and

Ni(t) = γ ·Ni (t− 1) + 1, we can rewrite the above expression recursively as,

Ei(ai, t) =
γ ·Ni (t− 1)E (ai, t− 1) + I

(
at−i = a−i

)
gi (ai, a−i)

γ ·Ni (t− 1) + 1
.

Finally, an action is selected via the logit specification with parameter λ; that is, the probability of

choosing action ai in period t+ 1 is

Pi (ai, t+ 1) =
eλ·Ei(ai,t)

∑
ai∈Ai

eλ·Ei(ai,t)
.

The γ-WB model with strategy learning can be written in the same notation as the STEWA model

with strategy learning. The number of observation-equivalents of past experience starts with Ni(0) = 1.

The initial attractions are all equal and set to the expected payoff in the game if both players mix with

probability 0.5. The attractions in this model evolve according to the following two rules and parameter

γ:

Ni (χ) = γ ·Ni (χ− 1) + 1, (3)

and

Aj
i (χ) =

γ ·Ni (χ− 1) ·Aj
i (χ− 1) + Ej

i (χ)

Ni (χ)
. (4)

This model is equivalent to the γ-WB model of Cheung and Friedman (1997) if the set of automata

is restricted to the two one-state automata. Notice that if γ = 0, then the attractions simplify to the

expected payoff from the last block. Also, the probability of a player i choosing strategy j, when he

updates his strategy at the beginning of block χ+ 1, is

Pj
i (χ+ 1) =

eλ·A
j
i (χ)

∑K
k eλ·A

k
i (χ)

.

Finally, similar to the STEWA model with strategy learning, players update their strategies asyn-

chronously. In period t, a player updates his strategy with probability 1
Pt
i
.

C.3 Inertia, Sampling and Weighting (I-SAW)

We first review the I-SAW model of Erev, Ert, and Roth (2010) with actions. I-SAW is an instance-based

model, which allows for three response modes: exploration, inertia and exploitation. In each period,
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New
Period

No
Explore

No
Inertia

Start Explore Inertia
Calcuate
ESV

1− εi

εi

1− πSurprise
i

πSurprise
i

Figure 6: Schematic Description of I-SAW

Notes: I-SAW allows for three response modes: exploration, inertia and exploitation. In exploration trials, a

player chooses amongst actions with some probability. Exploration occurs with probability εi. Inertia occurs

with probability (1 − εi) × π
Surprise(t)
i . In this mode, a player repeats the last action. Exploitation occurs with

probability (1−εi)× (1−π
Surprise(t)
i ). In exploitation trials, a player selects the action with the highest Estimated

Subjective Value (ESV).

a player enters one of the modes with different probabilities. The I-SAW model with action learning

can be summarized in the schematic in Figure 6. There are n players in the game. Each player has

a set of parameters (pA, εi,πi, µi, ρi,ωi). The parameter pA ∈ [0, 1] is the same for all agents. The

other parameters are idiosyncratic with εi ∼ U [0, ε], πi ∼ U [0,π], µi ∼ U [0, µ], ρi ∼ U [0, ρ] and

ωi ∼ U [0,ω]. Dropping the subscripts for convenience, the parameters of the model are (pA, ε,π, µ, ρ,ω).

Player i’s action set is Ai = {A,B}. Let ati be the action of player i that was played in period t, where

hi (t1, t2) =
{
at1i , a

t1+1
i , . . . , at2i

}
for t1 ≤ t2. Similarly, let at−i be the actions of players other than i in

period t, where h−i (t1, t2) =
{
at1−i, a

t1+1
−i , . . . , at2−i

}
for t1 ≤ t2. We explain next the three response modes.

Exploration

In exploration, each player chooses action A with probability pA and action B with probability 1 − pA.

The probabilities are the same for all players.

Inertia

The decision to enter the inertia mode depends on an endogenous parameter Surprise(t) ∈ [0, 1]. A

player might enter the inertia mode after period 2 with probability π
Surprise(t)
i , where πi ∈ [0, 1]. The

probability of inertia is low when surprise is high and vice versa.

Exploitation

In exploitation trials, an individual selects the action with the highest Estimated Subjective Value (ESV).

To determine the ESV, player i randomly selects µi elements from h−i (0, t− 1) with replacement; let
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us call this set M−i (0, t− 1). This set is chosen according to the following: with probability ρi player

chooses at−1
−i and with probability 1− ρ−i player chooses uniformly over h−i (0, t− 1). The same set M−i

is used for each ai ∈ Ai. The sample mean for action a′i is then defined as

SampleM(a′i, t) =
1

|M−i (0, t− 1)|
∑

a−i∈M−i(0,t−1)

gi
(
a′i, a−i

)
.

Then, player i’s ESV of action a′i is

ESV
(
a′i
)
= (1− ωi) · SampleM(a′i, t) + ωi ·GrandM(a′i, t),

where ω is the weight assigned on the payoff based on the entire history (GrandM) and 1 − ω is the

weight assigned on the payoff based on the sample from the history (SampleM). Then, the player simply

chooses the a′i that maximizes ESV (and chooses randomly in ties).

The I-SAW model with strategy learning is different from the I-SAW with action learning in two

important aspects. First, given that no exploration happens in a given period, the probability of inertia

is now (1 − 1
Pt
i
) rather than πSurprise

i . Therefore, there is one less parameter than before. Second, the

calculation of the ESV now depends on the distribution of beliefs over strategies. The grand mean is

thus

GrandMi

(
sj ,χ

)
=

1

χ

χ∑

k=1

Ej
i (k).

Next, let Mi(χ) be a set of µi numbers drawn with replacement from {1, 2, . . . ,χ}. Then, the sample

mean is

SampleMi

(
sj ,χ

)
=

1

|Mi(χ)|
∑

k∈Mi(χ)

Ej
i (k),

where the same set Mi is used for each si ∈ Si. Finally, the ESV is calculated as

ESVi

(
sj ,χ

)
= (1− ωi) · SampleMi

(
sj ,χ

)
+ ωi ·GrandM

(
sj ,χ

)
.

The framework work as follows. In the first period, a strategy is randomly selected (i.e. exploration

takes place). Concurrently, the expected payoff is calculated; this is the payoff attained if both players

mix with probability 0.5. In the second period, a player explores with probability εi. With probability

(1− εi)× (1− 1
Pt
i
) the player enters the inertia mode. If the player does not enter the inertia mode, then

the block of periods is completed and a new block of periods starts off. In the beginning of the block,

the player calculates the ESV of all strategies and chooses to play with the strategy that maximizes the

ESV. The specific ESV becomes the new expected payoff, which is also used to calculate Pt
i ; the latter

determines the probability of inertia.
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D Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The system

can be in any one of a finite number of internal configurations or “states.” The state of the system

summarizes the information concerning past inputs that is needed to determine the behavior of the

system on subsequent inputs. The specific type of finite automaton used here is a Moore machine. A

Moore machine for player i, Mi, in a repeated game G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, q
0
i , fi,

τi) where Qi is a finite set of internal states of which q0i is specified to be the initial state, fi : Qi → Ai

is an output function that assigns an action to every state, and τi : Qi × A−i → Qi is the transition

function that assigns a state to every two-tuple of state and other player’s action. It is pertinent to

note that the transition function depends only on the present state and the other player’s action. This

formalization fits the natural description of a strategy as i’s plan of action in all possible circumstances

that are consistent with i’s plans. In contrast, the notion of a game-theoretic strategy for i requires the

specification of an action for every possible history, including those that are inconsistent with i’s plan of

action. It is important to highlight that to formulate the game-theoretic notion of a strategy, one would

only have to construct the transition function so that τi : Qi ×A → Qi, instead of τi : Qi ×A−i → Qi.

A
q1

B
q2

B

A AB

S
ta
rt

S
ta
rt

Qi = {q1, q2}
q0i = q1

fi (q) =

{
A if q = q1
B if q = q2

τi (q, a−i) =

{
q1 if (q, a−i) = (q1, A)
q2 otherwise

Figure 7: Grim-Trigger Automaton

Notes: The vertices denote the states of the automaton, and the arcs labeled with the action of the other agent

indicate the transition to the states.

In the first period, the state is q0i , and the automaton chooses the action fi(q
0
i ). If a−i is the action

chosen by the other player in the first period, then the state of i’s automaton changes to τi(q
0
i , a−i), and

in the second period, i chooses the action dictated by fi in that state. Then, the state changes again

according to the transition function given the other agent’s action. Thus, whenever the automaton is

in some state q, it chooses the action fi(q), while the transition function τi specifies the automaton’s

transition from q (to a state) in response to the action taken by the other player. For example, the

automaton (Qi, q
0
i , fi, τi) in Figure 7 carries out the “Grim-Trigger” strategy. In the transition diagram,

a vertex denotes the internal state of the automaton with the prescribed agent’s action indicated in the

center, and the arcs labeled with the action of the other player indicate the transition to the states. Thus,

the strategy chooses A, as long as both players have chosen A in every period in the past and chooses B

otherwise.
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E Evolution of Fit Within the Experimental Phase

The experimental phase consisted of a fixed-pair matching of 100 periods. In Figure 4, we displayed the

plots of the models with strategy learning and the human experimental data, while averaging the last 10

periods of game-play. Furthermore, Table 3 indicated the Euclidean distance of the models with strategy

learning for the same range of periods in the experimental phase. It is also informative to compare the

models’ fit to the experimental data in the later periods with the models’ fit to the experimental data

in the earlier periods. This way, we can determine the models’ evolution of fit within the experimental

phase.

In Figure 8, we plot the predictions of the three strategy learning models and the data from the

experiments of Mathevet and Romero (2012). But this time, the computational simulations and the

experimental results consist of averaging the first 10 periods of game-play. Furthermore, in Table 7,

we indicate the total Euclidean distance between the laboratory experimental data and the respective

predictions of the proposed models in the first 10 periods as well as the last 10 periods across all four

games. Overall, the strategy learnings models in the first 10 periods of game-play do reasonably well.

The total Euclidean distance across the four games is 1.622 in the STEWA model, 1.642 in the γ-WB

model and 1.085 in the I-SAW model. Looking at Figure 8, we observe that the models do a fairly

good job in fitting the experimental data in the Prisoner’s Dilemma game where they predict mutual

cooperation, and in the Stag-Hunt game where they predict the payoff-dominant Nash equilibrium. On

the other hand, the STEWA and γ-WB models predict some alternations in the Battle of the Sexes game,

and strong mutual conciliation in the Chicken game. Some mutual conciliation is indeed observed in the

experimental data, but no alternations are observed in the Battle of the Sexes game. The latter games

are clearly tougher to establish coordination from the beginning. Thus, we observe a lot of noisy behavior

in the experimental data as a result of subjects’ different backgrounds and abilities to internalize fully

STEWA γ-WB I-SAW

Strategy Learning Models (Last 10 Periods) 0.846 0.893 1.073

Strategy Learning Models (First 10 Periods) 1.622 1.642 1.085

Table 7: Evolution of Fit within the Experimental Phase

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the

respective predictions of the models in the experimental phase across all four games. The first row is reproduced

from Table 3 and indicates the Euclidean distance between the experimental data and the predictions of the

strategy learning models for the last 10 periods. The second row indicates the Euclidean distance between the

experimental data and the predictions of the strategy learning models for the first 10 periods. All results are based

on a discretization parameter ε = 0.5. If the predictions matched the data perfectly, then the distance would have

been 0.

39



the instructions and/or the game structure from the start. Such noisy behavior is hard to capture in the

proposed models. However, the plots of Figure 4 confirm that as time goes by, learning takes place, which

limits the amount of noise in subjects’ behavior, and thus enables the proposed models to approximate

subjects’ behavior at the end remarkably well.
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STEWA γ-WB I-SAW Human Subjects
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Figure 8: Strategy Learning Models & Experimental Data - First 10 Periods

Notes: We validate the predictions of the strategy learning models in the experimental phase with human data

from the experiments of Mathevet and Romero (2012). The computational simulations and the experimental results

with human subjects consist of averaging the first 10 periods of game-play.
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F Alternative Specifications

F.1 Asynchronous Updating vs. Synchronous Updating

The third rule proposed requires that players update their repeated-game strategies with the completion

of a block of periods. Furthermore, the length of a block is determined endogenously and is based on the

surprise-triggers-change regularity identified by Erev and Haruvy (2013). Alternatively, our framework

could dictate synchronous strategy-updates for all players. Although, such direction is behaviorally un-

realistic (for the reasons outlined in Section 5.3), nevertheless, we feel compelled to rerun the simulations

with simultaneous (synchronous) strategy-updates for all players in order to highlight the value-added of

asynchronous updating of repeated-game strategies in approximating subjects’ behavior.

The simulations of the strategy learning models with synchronous updating are run in an analogous

fashion to those of the strategy learning models with asynchronous updating; the only difference is that

we forego the asynchronous-updating-of-strategies equation and instead, introduce a parameter as the

probability of updating the strategy set. Therefore, in addition to the existing parameters of each model,

we introduce one more parameter: ρ. The three models have been calibrated based on a grid search.

The plots of the experimental phase are displayed in Figure 9. Furthermore, we indicate in Table 8, the

total Euclidean distance between the models with synchronicity in updating in the experimental phase

and the experimental data across the four games.

The synchronous strategy learning models perform quite well in the Stag-Hunt game and the Chicken

game. On the other had, they perform relatively well in the Prisoner’s Dilemma game and the Battle

of the Sexes game. Coordination on the cooperative outcome in the Prisoner’s Dilemma game is the

prevalent outcome in the experimental data albeit, as indicated in Figure 9, some pairs end up defecting.

The synchronous strategy learning models capture the cooperative outcome well, but have hard time

capturing the defecting outcome as shown in Figure 9. Applying asynchronous updating of strategies

in this specific game, makes it more difficult for players to coordinate on the cooperative outcome. For

example, a pair of players might be using cooperative strategies with triggers to defecting states in case of

non-conformity to the cooperative outcome (for instance, “Grim-Trigger” strategies). The asynchronous

updating is likely to lead to implementation of these strategies at different time periods. Consequently,

one of the players might be in a defecting state when the other player decides to implement the specific

strategy thus leading the pair to an endless string of retaliations i.e. mutual defection. Despite the fair

performance of the synchronous strategy learning models in the Prisoner’s Dilemma game and the Battle

of the Sexes game, the models with synchronous updating do quite well in the other two games. Thus,

for modelers who desire simplicity, the synchronous strategy learning models are a good alternative.

However, for our purposes, the proposed modeling framework with asynchronous updating of repeated-

game strategies is still a better choice given that it incorporates elements of psychological realism and

economic relevance as envisioned by Rabin (2013). Additionally, the three strategy learning models with

asynchronous updating do unequivocally better across all four games relative to the respective strategy

learning models with synchronous updating as shown in Table 8.
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Figure 9: Strategy Learning Models with Synchronous Updating in the Experi-
mental Phase & Experimental Data

Notes: We validate the predictions of the three strategy learning models with synchronous updating of strategies in

the experimental phase with human data from the experiments of Mathevet and Romero (2012). The computational

simulations and the experimental results with human subjects consist of averaging the last 10 periods of game-play.
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F.2 Alternative Fitness Specifications

One of the difficulties in coping with repeated-game strategies is that it is not possible to observe the pre-

cise strategy of the opponent despite observing the history of play. One way to get around this difficulty

is to use reinforcement learning, which doesn’t require knowledge of the opponent’s strategy.24 Yet a big

drawback of reinforcement learning models is that such approach can take a long time to converge. In

order for a given repeated-game strategy’s attraction to be updated in a reinforcement-learning model,

the strategy must be played first. As the set of possible repeated-game strategies increases, the speed of

convergence in reinforcement learning models deteriorates.25 Another way to get around the difficulty of

formulating beliefs about the repeated-game strategy of the opponent is to apply a fitness function. This

approach is particularly attractive as complementing reinforcement learning with a belief-based compo-

nent expedites convergence. When beliefs are added to the model, the attractions for every repeated-game

strategy are updated at the end of every block. Therefore, the attraction on a strong strategy can start

to increase with the first attraction-update; in contrast, implementing only the reinforcement component,

keeps a strong strategy unaffected in terms of attraction-weights until it gets selected. For instance, the

fitness function proposed here counts the number of consecutive fits between the candidate repeated-game

strategy of the opponent and the observed sequence of actions profiles starting from the most recent and

going backwards. We discuss next two alternative fitness specifications.

The first fitness function is a memory-one specification in which player i develops beliefs about player

−i’s strategy in the χth block. Recall that the χth block’s length for player i is denoted by Ti(χ). The

block is divided into one-period observations of the following form:
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i , where t(χ)

is the tth period corresponding to block χ. A strategy s−i is said to support
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i

if there exists some history ht(χ) ∈ H such that the last action profile of ht(χ) is
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
and

s−i

(
ht(χ)

)
= a

t(χ)
−i . The first alternative fitness function can then be written as,

F1 (s−i,χ) =

Ti(χ)−2∑

r=0

I
(
s−i supports

(
ari , a

r
−i

)
⇒ ar+1

−i

)
.

24Reinforcement learning operates according to the “law of effect,” which was formulated in the doctoral dis-
sertation of Thorndike (1898). In principle, it assumes that a strategy is “reinforced” by the payoff it earned and
that the propensity to choose a strategy depends, in some way, on its stock of reinforcement. Over the last decade,
a growing body of research has studied analytically the properties of reinforcement learning both in normal-form
and extensive-form games. On one hand, Laslier, Topol, and Walliser (2001) examined the convergence properties
in repeated, finite, two-player, normal-form games in a learning process where each player uses the Cumulative
Proportional Reinforcement (CPR) rule on strategies. The authors proved that the process converges with positive
probability towards any strict pure Nash equilibrium. Related theoretical results were also given in Hopkins (2002)
and Ianni (2013). On the other hand, Laslier and Walliser (2005) showed that when the CPR rule is applied on
actions in a repeated, finite, extensive-form game with perfect information and generic (no ties for any player)
payoffs, the process converges with probability one to the (unique) subgame perfect equilibrium. These contribu-
tions in economic theory were preceded by a large body of literature that originated in the work of mathematical
psychologists in the 1950s (see for example, Bush and Mosteller (1951) and Estes and Burke (1953)).

25In addition, several studies show that providing foregone payoff information affects learning, which suggests
that players do not simply reinforce chosen strategies (see, for instance the study of Mookherjee and Sopher (1994)).
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The second fitness function is a memory-two specification similar to the one above. In this case, the

block is divided into two-period observations of the following form:
(
a
t(χ)−2
i , a

t(χ)−2
−i

)
⇒

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒

a
t(χ)
−i . A strategy s−i is said to support

(
a
t(χ)−2
i , a

t(χ)−2
−i

)
⇒

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i if there exists some

history ht(χ) ∈ H such that
(
a
t(χ)−2
i , a

t(χ)−2
−i

)
and

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
are the last two action profiles of

ht(χ) and s−i

(
a
t(χ)−2
i , a

t(χ)−2
−i

)
= a

t(χ)−1
−i and s−i

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
= a

t(χ)
−i . The second alternative fitness

specification can be written as,

F2 (s−i,χ) =

Ti(χ)−3∑

r=0

I
(
s−i supports

(
ari , a

r
−i

)
⇒

(
ar+1
i , ar+1

−i

)
⇒ ar+2

−i

)
.

We display the plots for each alternative fitness specification in the experimental phase in Figures

10-11 along with the experimental data. The plots use the parameters that led to the best goodness of

fit across all four games. In addition, Table 8 shows the total Euclidean distance between the laboratory

experimental data and the respective predictions of the models with the alternative fitness specifications

in the experimental phase across all four games. At the aggregate level, the models with the alternative

fitness functions do relatively well compared to their respective action learning models, but not as good

as the strategy learning models with the specific fitness function proposed.

STEWA γ-WB I-SAW

Action Learning Models 2.064 2.575 2.404

Strategy Learning Models 0.846 0.893 1.073

Synchronous Updating 1.254 1.112 1.291

Fitness Function #1 1.485 1.703 1.779

Fitness Function #2 1.398 1.542 1.695

Table 8: Alternative Specifications

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the

respective predictions of the models in the experimental phase across all four games. The first two rows are

reproduced from Table 3, whereas the last three rows pertain the alternative specifications. All results are based

on a discretization parameter ε = 0.5. If the predictions matched the data perfectly, then the distance would have

been 0.

In addition, a value-added of the fitness function proposed in our model, beyond its overall superiority

in approximating subjects’ behavior well, is that it is behaviorally realistic, in sharp contrast to the alter-

native fitness specifications, which are somewhat naive. For instance, both alternative fitness functions

assign equal weight to all actions in the block. Assume player i is trying to determine his opponent’s

45



repeated-game strategy. Furthermore, assume his opponent played A in every period in the first half of

the most recent block, but played B in every period in the second half of the most recent block. The

two alternative fitness functions would assign equal weight to the “Always A” strategy and “Always B”

strategy. However, the fitness function proposed would assign high weight to the “Always B” strategy,

but 0 weight to the “Always A” strategy, because it starts from the most recent observation in the block

and works backwards.
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STEWA γ-WB I-SAW Human Subjects
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Figure 10: Strategy Learning Models with Fitness Function #1 in the Experimen-
tal Phase & Experimental Data

Notes: We validate the predictions of the three strategy learning models with fitness function #1 in the experimental

phase with human data from the experiments of Mathevet and Romero (2012). The computational simulations

and the experimental results with human subjects consist of averaging the last 10 periods of game-play.

47



STEWA γ-WB I-SAW Human Subjects

P
ri
so

n
e
r’
s
D
il
e
m
m
a

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

B
a
tt
le

o
f
th

e
S
e
x
e
s

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

S
ta
g
-H

u
n
t

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

C
h
ic
k
e
n

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

0 1 2 3 4

0

1

2

3

4

Payoff 2

P
ay
off

1

Figure 11: Strategy Learning Models with Fitness Function #2 in the Experimen-
tal Phase & Experimental Data

Notes: We validate the predictions of the three strategy learning models with fitness function #2 in the experimental

phase with human data from the experiments of Mathevet and Romero (2012). The computational simulations

and the experimental results with human subjects consist of averaging the last 10 periods of game-play.
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G Sensitivity Analysis
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Figure 12: Sensitivity of Results to the Discretization Parameter ε

Notes: We compare the strategy learning models with the action learning models for the entire range of the

discretization parameter ε. The action learning models are denoted with dashed lines, whereas the strategy learning

models are denoted with solid lines.
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